
Hyperspectral imaging in highly scattering 
media by the spectral phasor approach using 
two filters 

ALEXANDER DVORNIKOV AND ENRICO GRATTON* 

Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of 
California Irvine, Irvine, CA 92697, USA 
*egratton22@gmail.com 

Abstract: Hyperspectral imaging is a common technique in fluorescence microscopy to 
obtain the emission spectrum at each pixel of an image. However, methods to obtain spectral 
resolution based on diffraction gratings or integrated prisms work poorly when the sample is 
strongly scattering. We developed a microscope named the DIVER that collects the 
fluorescence emission over a very large angle. Since the fluorescence light after passing 
through the multiple scattering sample is not collimated, the use of grating or prisms strongly 
limits the amount of light that can be used with available hyperspectral devices. Here we 
show that 2 filters that accept uncollimated light over a large aperture are sufficient to 
calculate the spectral phasor rather than displaying the entire spectrum. Using the properties 
of the spectral phasors, we can resolve spectral components and perform the type of data 
analyses that are usually performed in hyperspectral image analysis. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Spectral phasors were recently introduced as an alternative to spectral demixing, for the 
determination of FRET and for the measurement of dipolar relaxation of probes in 
membranes [1–8]. The basic concept in the spectral phasor approach is that the entire 
spectrum is not needed for some of the classical spectral analysis techniques such as 
demixing, but only few parameters of the spectral distribution are sufficient for these 
calculations. In the original papers in this area [1,2] the focus was on using the zero and first 
component of the spectral Fourier transform as a proxy for the entire spectrum. In the case in 
which the spectrum is dominated by few spectral bands, this approach is very efficient and 
provides fast and valid alternatives to the analysis of the full spectrum. This is particularly 
convenient in cases like spectral analysis during surgery, in live animals studies [9,10] and in 
all those cases in which full hyperspectral imaging is not feasible or inconvenient. 

One example of a system that could greatly benefit from the phasor analysis approach in 
tissue spectroscopy (absorption and fluorescence) is the case in which the light to be collected 
has undergone multiple scattering. The multiple-scattered light travels in all directions so that 
it cannot be easily focused on the entrance slit of a dispersive element or transformed in a 
parallel beam for use with hyperspectral cameras. In thick-tissue spectroscopy, the light, after 
being transmitted through the tissue, is emitted over a very large cone angle. The various 
schemes available to capture this transmitted (or fluorescence) light only use a relatively 
narrow angle of the emitted light with severe reduction of the signal [11,12]. 

We introduced in 2011 a microscope design (called the DIVER) that can capture a very 
large solid angle of the emitted light (close to 2π) and we have shown that this microscope, 
depending on the tissue thickness, can capture several orders of magnitude more light than 
conventional microscopes [13]. An advantage (and limitation) of the DIVER design is that the 
transmitted fluorescence is not collimated. Therefore, in the transmitted path of the DIVER 
microscope, glass filters are employed since these filters are largely insensitive to the incident 
angle, which could be very large. We show here that plastic filters that can be used for this 
purpose are available (Cyan and Green filters from Neewer 18x20cm Transparent Color 
Correction Lighting Gel Filter Set, available for $10.99 on Amazon cat# B016Q0BA6A) and 
we describe their use in the DIVER microscope to obtain hyperspectral information using the 
spectral phasor approach. 

2. Classical calculation of the spectral phasor components 

In the common application of the spectral phasor method [4,13], the transmitted or 
fluorescence emission is collected with a spectrograph to provide the spectrum that we 
indicate by I(λ) over a spectral band Δλ. 

We define the G and S components of the spectral phasor to be [14] 

 ( )* ( *2 * / ) / ( )G I cos n Iλ λλ π λ λ λ=  Δ   (1) 

 ( )* ( *2 * / ) / ( )S I sin n Iλ λλ π λ λ λ=  Δ   (2) 

where the sum is calculated in the bandwidth Δλ and n is an index to characterize the 
harmonics in the Fourier coefficients given by the G and S expressions. The G and S 
components obtained using this calculation are plotted in a polar plot called the spectral 
phasor plot for every pixel of an image or for different locations in a tissue sample [14]. 

For multiple scattering samples, the collection of I(λ) can be problematic. Let us consider 
first the case of collection of the fluorescence from a scattering sample. We assume that the 
direct excitation light is filtered out. Here we show that to obtain the data necessary for the 
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calculation of the phasor spectral components we can use in the emission side of the 
microscope a filter that transmit the light in a “cosine and sine” profile over a bandwidth Δλ. 
The image obtained when these filters are inserted in the collection path, will directly provide 
the numerator of the expressions for G and S in Eq. (1) and Eq. (2) after some manipulation 
as explained below. The denominator could be obtained by removing the filters since the 
numerator is the total intensity. Using this approach we need to collect 3 images, with the cos 
and sin filters and without the filters. Then we calculate the G and S coordinates of the 
spectral phasor at each point of the image using Eq. (1) and Eq. (2). We note that the cos-sin 
filters are physical components of the microscope. The spectral phasor is obtained at the 
harmonic n = 1 which depends of the specific transmission of the filters used. 

3. Calculation of the cos and sin response of transmission filters 

Let us indicate with Fcos(λ) and Fsin(λ) the transmission of these two filters and rewrite the G 
and S coordinates of the spectral phasor in terms of the transmission of the filters. We 
indicate with I(λ) the total intensity measured in the absence of the filters. 

Of course, the G and S coordinates obtained from the transmission through the filters are 
not equal to the mathematical expression of Fourier spectral components given in Eq. (1) and 
Eq. (2), unless the filters have a perfect cos and sin transmission and they span from −1 to + 
1, which cannot be obtained with transmission filters. Therefore, the response of each filter 
must be shifted and normalized to give the G and S components. Using a spectrophotometer 
we can easily obtain the transmission of each filter in a given bandwidth Δλ and in the range 
between 0 and 1. If we indicate with FcosMAX and FcosMIN the maximum and minimum 
transmission for the cos filter (and similarly for the sin filter) as determined by the 
transmission spectrum, we can modify Eq. (1) and Eq. (2) to the following form (only the G 
component is shown here since the expression for the S component is similar after 
exchanging the cos with sin). We normalize the filter transmission using the following 
expression, where Fcos(λ) is the transmission spectrum of the cos filter at each wavelength (we 
multiply the transmission by 2 and subtract 1). 

 ( )norm cos cos MIN cos MAX cos MINF( ) 2*(F ( ) F ) / F F 1λ λ= − − −  (3) 

Now F(λ)norm is in the range between + 1 and −1, as it should be for a cosine filter. 
The measured normalized total light (Icos) of an unknown spectrum S(λ) after passing 

through the cos filter is given by 

 cos cosI ( F ( )* I( )) / I( )λ λλ λ λ=    (4) 

This total intensity must be normalized using Eq. (3) to give the spectral phasor 
coordinate G (and similarly for the component S) 

 ( ) ( )cos cos MIN cos MAX cos MING 2 I F / F F 1= − − −  (5) 

Note that the normalization procedure only uses the transmission spectrum as obtained 
with the spectrophotometer of the cosine and sine filters from which the maximum and 
minimum transmission of the filters is obtained in a given bandwidth Δλ. The normalization 
factor are measured only once for each filter. 

4. Linear combination of the spectral phasor components 

The G and S components measured using Eq. (5) have the same properties of the G and S 
Fourier components in Eq. (1) and Eq. (2). For example, they obey the law of linear 
combination of components addition as shown below. If I1 and I2 represent 2 different spectra 
and they are mixed in a fractional contribution to the total intensity as f1 and f2 = 1-f1 then we 
have for each individual spectral component 

 1 1 1cos( )* ( ) / ( )G I I Iλ λ λ λ=    (6) 
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 2 2 1cos( )* ( ) / ( )G I I Iλ λ λ λ=    (7) 

And for the combination of the two components we have 

 ( )
cos 1 1cos 2 2 cos

1 1 1 2

( ) ( ) ( ) ( )

1
( ) ( ) ( )

I I f I f I
G f G f G

I I I
λ λ λ

λ λ λ

λ λ λ λ

λ λ λ

∗ ∗ ∗
= = + = ∗ + − ∗
  

  
 

  (8) 
There is an analogous expression for the S component. The law of linear combination 

remains valid provided that ΣλI(λ) is the total intensity measured over the entire bandwidth. 
The same reasoning applies to an arbitrary number of components. 

5. Example of cosine and sine filters 

We use inexpensive commercial plastic Cyan and Green filters that are sold in large sheets 
and we cut them to fit the filter holder of the DIVER microscope (Amazon, color filters, cat# 
B016Q0BA6A approximately $10 for a 18cmx20cm sheet). These filters have a transmission 
response that is “similar” to a cos-sin response in the spectral region between 400 and 600 nm 
which is the active wavelength region for the DIVER microscope. 

 

Fig. 1. Cos-sin filters transmission. A) The filters transmission used to obtain the first 
harmonic of the spectral bandwidth. Outside the region 400nm 600nm the transmission is zero 
with the addition of bandpass filters. B) The output of the filters is normalized and shifted to 
give the range of the cosine and sine function. C) The phasor representation of the G and S 
function obtained with these filters. Note that the polar phasor plot of the filters deviates from 
the perfect cosine and sine functions (should be a circle). 

 

Fig. 2. Correction for the non-ideal response of the filters. A) Correction factors for the phase 
and amplitude of the filter obtained by comparing the measured response with the ideal 
response of the cos-sin functions. The phase measured at a given wavelength is compared with 
the theoretical value (red arrow). For the theoretical value of the phase, the correction factor of 
the modulation is read from the graph. B) After the correction is applied, the filters have the 
ideal response. C) The phasor representation of the filter after correction is now a circle, as it 
should be for a perfect (cos-sin) filter combination. 
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Figure 1(A) shows the filter transmissions for the cos and sin filters as measured with the 
spectrophotometer. Figure 1(B) shows the normalized spectrum in the region between 400nm 
and 600nm. Each of the filter spectrum is first normalized to be between 0 and 2 using the 
max-min of each spectra transmission and then the normalized spectrum is multiplied by 2 
and shifted by −1 so that the value oscillates between + 1 and −1 as it should be for a cosine 
and sine function. Figure 1(C) shows the phasor polar plot representation according to Eq. 
(3). Note that the filters in Fig. 1(A) are not exactly representing the cosine and sine 
functions. 

Next in Fig. 2 we calculate the ideal cosine and sine functions for the same spectral region 
and we plot the deviation of the phase and modulation of the real filters with respect to the 
ideal filters as shown in Fig. 2(A). The functions in Fig. 2 can be used to “correct” the real 
filters. Specifically, given a measured phase (red arrow) and the measured modulation as 
obtained by the real filter, we interpolate the values using the curves of Fig. 2 to obtain the 
phase and modulation of the ideal filter for each value of the phase. For any given value of 
the measured phase indicated by the red arrow we obtain the theoretical value of the phase at 
that point. Then for the theoretical value of the phase we get the correction to the applied to 
the measured modulation value to obtain the theoretical modulation value at the measured 
phase. This correction can be done only if the plot of the measured phase with respect to the 
theoretical phase of Fig. 2 is monotonic. In few words, given a measured phase, we can 
calculate the corrections for the phase and the corresponding correction for the modulation. 

We can use these deviations to correct the filters to obtain the ideal cos-sin shape and then 
the correspondent phasor plot as shown in Fig. 2(C). However, this correction, albeit small, 
compromise the law of linear combination because points at different phase are moved to fit 
the exact position corresponding to the mathematical form of the cos-sin functions. So if the 
law of linear combination is needed for analysis, we will not use this correction. 

6. Behavior of the cos-sin filter in the presence of multiple scattering 

To calibrate the cos-sin filter combination in the DIVER microscope, we brought light of 
different wavelength using a tungsten lump and a monochromator. The output of the 
monochromator was coupled to the microscope using a mirror. In the DIVER we use 
collimated light to illuminate the filter with a direction perpendicular to the surface of the 
filter. This measurement gave us the calibration for a transparent sample. For transparent 
samples we can obtain the spectral phasor using only the cos-sin filters. Then we added in 
front of the filters a thick (5 mm) scattering slab as shown in Fig. 3. Also in this case we 
obtain the spectral phasor with identical resolution as the transparent sample. Our conclusion 
is that for strongly scattering samples we obtain the same spectral phasor as for the 
transparent sample. 
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